

U-Star Endmill

General use Endmill for medium hardness and alloy steel cutting

Wide line-ups for cutting various and complicated shaped workpieces
 Long tool life due to new coating and optimal substrate for cutting

General use Endmill for medium hardness and alloy steel cutting

U-Star Endmill

The U-Star Endmill is launched with various shapes and line-ups for machining medium hardness steel workpieces (HRC30~50) - especially for the complicated shaped molds.

The **U-Star Endmill** ensures high cutting quality dispersing cutting load from s-curved gash shape and reduced fracture from chipping resistance enhanced cutting edge. In addition, U-Star Endmill realizes high quality cutting with its high precision tolerance management. It has good chipping resistance as it adapted optimal substrate selection per Endmill shapes for medium hardness workpiece machining and the application of new AlCrN multi layered coating grants excellent wear resistance, enhanced anti oxidation, and excellent lubrication ensuring stable machining under high frictional heat condition.

KORLOY's U-Star Endmill will serve to achieve high productivity with its various line-ups for medium hardness workpiece cutting and high cutting performance.

>> Various line-ups

- Ball/flat/radius/roughing
- Rib type (straight and taper)
- >> Enhanced wear resistance, Anti-oxidation and lubrication
 - New AICrN series multi layered coating

» Increased cutting performance and precision

- Dispersion of cutting load from S-curved gash shape
- h5 level shank and high precision Endmill diameter/ radius management
- >> Increased chipping resistance
 - Optimal substrate up to Endmill shapes
 - Sharp cutting edge

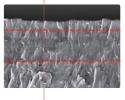
⊠ Code system

U R	50	2	030 1	0 25	100 S3	
U-Star Endmill Type B: Ball SB: Staright ball E: Flat	Length/ shank type 50: Straight 51: Neck 52: Long shank 53: Lollipop 54: Taper neck		Tool dia. 010: Ø1.0 mm 060: Ø6.0 mm 250: Ø25.0 mm	Effective lengt 005: 0.5 mm 10: 10 mm 50: 50 mm		
R: Radius		No. of flute		ner R	Overall length	
SPM: High feed XE: Heavy cut flat		2:2 flutes		.05 mm	50:50 mm	
XE: Heavy eur hat XR: Multi helix rac TE: Taper flat TR: Taper radius TB: Taper ball DR: Double radius F: Roughing	lius	3: 3 flutes 4: 4 flutes 5: 5 flutes 6: 6 flutes	010:0. 020:0.		100: 100 mm 150: 150 mm	

☑ Features

LE: Flat (lathe)

- Carbide Endmill for H_RC30~50 medium hardness steel and die steel cutting
- · Enhanced wear resistance, anti-oxidation and lubrication by applying AICrN series coating layer
- · Enhanced cutting edge strength of ball Endmill applying ultra-fine substrate (PC303W)
- Higher chipping resistance of flat Endmill applying high toughness substrate (PC315W)
- · Various shaped line-ups for complicated mold machining
- · Suitable for precision cutting with high precision tolerance of h5 shank, flute and radius

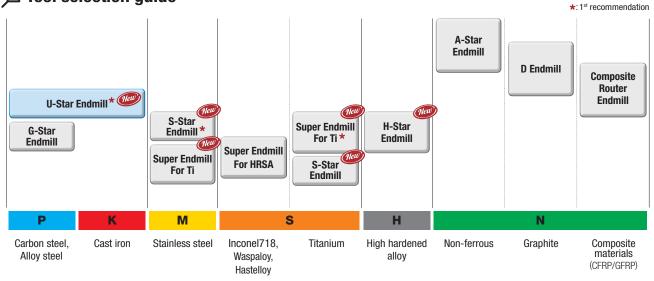

Applying substrate for medium or hardness steel cutting

 Separating the substrate (PC303W and PC315W) maximizes the features of tool and ensures general use.

Applying S-curved gash shape •

 Increased cutting performance and wear resistance due to dispersing cutting force

- Enhanced chipping resistance in the beginning of cutting
- Guiding stable cutting for managing the properties of mold machining



AICrN base new coating o-

- Increased wear resistance and oxidation resistance by multi layer
- Enhanced lubrication with Cr containing
- Stable cutting under frictional heat

☑ Tool selection guide

• Applicable workpiece

©: Excellent ○: Good

Carbon steel Alloy steel	Pre-hardened steel	Hardened steel		Cast iron	Aluminum	Stainless	Ti ellev	Ni allov	
(~ HB225)	(HB225 ~ 325)	(HRC30 ~ 50)	SKD61 (~ HRC55)	SKD11 (HRC55~)	~ FCD500	Aluininum	steel	Ti alloy	INI AIIUY
0	O	O	0		0				

✓ Application examples

		Pre-harde	ened steel (STAV	IAX)		
Cutting conditions	vc(m/min) = 157, fz(m	nm/t) = 0.17, ap(m	m) = 0.18, ae(mm)	= 0.3, wet		
Tool	UB502060 (Diameter =	Ø6, PC303W)				
			U-Star Endmill Competitor A Competitor B		100%	Equivalent wear resistance
1 All					10070	► Tool life (%)
U-Star Endr	nill] [Competitor A]	[Competitor B]	0	20 40 6	60 80 100	120
Cutting conditions	vc(m/min) = 151, fz(m		l ened steel (KP4 m) = 0.18, ae(mm)			
Гооі	UB502060 (Diameter =	Ø6, PC303W)				
			U-Star Endmill		100%	10% ncreased wear resistance
			Competitor A		91%	
		INTE	Competitor B	45%		► Tool life (%)
[II-Star End	nill] [Competitor A]	[Competitor B]	0	20 40 6	60 80 100	120

[U-Star Endmill]

[Competitor A]

✓ Application examples

		Pre-harde	ned steel (NAK	(80)		//////////////////////////////////////
Cutting conditions	vc(m/min) = 134, fz(m	nm/t) = 0.17, ap(mm) = 0.18, ae(mm)	= 0.3, wet		
Гооі	UB502060 (Diameter -	=Ø6, PC303W)				
						10%
		and the second	U-Star Endmill		100%	10% increased wear resistance
			Competitor A		91%	
anita ito	a name	ANTA LINE	Competitor B	26%		
(CC) (D-				20 40	60 80 10	► Tool life (%)
[U-Star End	mill] [Competitor A]	[Competitor B]	Ŭ	20 10		
		Pre-harden	ned steel (STAN	IAX)		
utting conditions	vc(m/min) = 54, fz(m)	m/t) = 0.03, ap(mm)	= 6.0, ae(mm) =	0.3, wet		
ool	UF504060 (Diameter =	=Ø6, PC315W)				
						18% increased
			U-Star Endmill		100%	chipping resistance
			Competitor A		100%	
	California Arte		Competitor B		85%	
	Contraction of the second					► Tool life (%)
LU Stor End		[Competitor B]	0	20 40	60 80 1	00 120
[U-Star End	mill] [Competitor A]	[Competitor B]	0	20 40	60 80 10	00 120 100 hile (%)
utting conditions		Pre-harde nm/t) = 0.03, ap (mm	ned steel (KP4	IM)	60 80 11	
utting conditions	vc(m/min) = 105, fz(n	Pre-harde nm/t) = 0.03, ap (mm	ned steel (KP4	IM)	60 80 11	
utting conditions	vc(m/min) = 105, fz(n	Pre-harde nm/t) = 0.03, ap (mm	ned steel (KP4	IM)	60 80 11	00 120 100 life (%)
utting conditions	vc(m/min) = 105, fz(n	Pre-harde nm/t) = 0.03, ap (mm	ned steel (KP4) = 6.0, ae(mm) =	IM)		
utting conditions	vc(m/min) = 105, fz(n	Pre-harde nm/t) = 0.03, ap (mm) = 6.0, ae (mm) = U-Star Endmill Competitor A	IM)	100%	
utting conditions	vc(m/min) = 105, fz(n	Pre-harde nm/t) = 0.03, ap (mm	U-Star Endmill Competitor A Competitor B	EM) = 0.3, wet	1100% 88% 68%	00 120
utting conditions	vc (m/min) = 105, fz (n UF504060 (Diameter =	Pre-harde nm/t) = 0.03, ap (mm) = 6.0, ae (mm) = U-Star Endmill Competitor A	IM)	1100% 88% 68%	00 120
utting conditions ool	vc (m/min) = 105, fz (n UF504060 (Diameter =	Pre-harde mm/t) = 0.03, ap (mm = Ø6, PC315W) I	U-Star Endmill Competitor A Competitor B	EM) = 0.3, wet	1100% 88% 68%	00 120
utting conditions ool	vc (m/min) = 105, fz (n UF504060 (Diameter =	Pre-harde nm/t) = 0.03, ap (mm = Ø6, PC315W) $I = I = I = I = I = I = I = I = I = I =$	<pre>ened steel (KP4) = 6.0, ae (mm) = U-Star Endmill Competitor A Competitor B 0</pre>	EM) = 0.3, wet 	1100% 88% 68%	00 120
Sutting conditions Tool	vc (m/min) = 105, fz (n UF504060 (Diameter =	Pre-harde nm/t) = 0.03, ap (mm = Ø6, PC315W) Image:	<pre>ened steel (KP4) = 6.0, ae (mm) = U-Star Endmill Competitor A Competitor B 0</pre>	EM) = 0.3, wet 	1100% 88% 68%	00 120
Sutting conditions Tool	vc (m/min) = 105, fz (n UF504060 (Diameter = inil) [Competitor A] vc (m/min) = 63, fz (min	Pre-harde nm/t) = 0.03, ap (mm = Ø6, PC315W) Image:	U-Star Endmill Competitor A Competitor B 0 Ned Steel (NAK = 6.0, ae (mm) =	EM) = 0.3, wet 	100% 88% 68% 60 80 10	00 120
Sutting conditions Tool	vc (m/min) = 105, fz (n UF504060 (Diameter = inil) [Competitor A] vc (m/min) = 63, fz (min	Pre-harde nm/t) = 0.03, ap (mm = Ø6, PC315W) Image:	<pre>ened steel (KP4) = 6.0, ae (mm) = U-Star Endmill Competitor A Competitor B 0</pre>	EM) = 0.3, wet 	1100% 88% 68%	00 120
Cutting conditions Tool	vc (m/min) = 105, fz (n UF504060 (Diameter = inil) [Competitor A] vc (m/min) = 63, fz (min	Pre-harde nm/t) = 0.03, ap (mm = Ø6, PC315W) Image:	U-Star Endmill Competitor A Competitor B 0 Ned Steel (NAK = 6.0, ae (mm) =	EM) = 0.3, wet 	100% 88% 68% 60 80 10	00 120
Sutting conditions Tool	vc (m/min) = 105, fz (n UF504060 (Diameter = inil) [Competitor A] vc (m/min) = 63, fz (min	Pre-harde nm/t) = 0.03, ap (mm = Ø6, PC315W) Image:	<pre>med steel (KP4) = 6.0, ae (mm) = U-Star Endmill Competitor A Competitor B 0 med steel (NAK = 6.0, ae (mm) = U-Star Endmill</pre>	EM) = 0.3, wet 	100% 88% 68% 60 80 11	00 120
utting conditions ool	vc (m/min) = 105, fz (n UF504060 (Diameter = inil) [Competitor A] vc (m/min) = 63, fz (min	Pre-harde nm/t) = 0.03, ap (mm = Ø6, PC315W) Image:	<pre>med steel (KP4) = 6.0, ae(mm) = U-Star Endmill Competitor A Competitor B 0 med steel (NAK = 6.0, ae(mm) = U-Star Endmill Competitor A</pre>	EM) = 0.3, wet 	100% 88% 68% 60 80 11 60 80 11 100% 82% 54%	00 120

区 Line-up

Type De	Designations	Grade	rade Picture	Product name	No. of	Size (Ø)		
Type	Designations	uiduc	i ictui c	i i ouuot name	flute	Min	Max	
	UE502	PC303W		2 flutes flat Endmill	2	0.1	25	
	UE512	PC303W		2 flutes long neck flat Endmill	2	0.1	12	
	UE522	PC303W		2 flutes flat Endmill	2	1.0	25	
	UXE502	PC303W		2 flutes flat Endmill for heavy cuts	2	0.1	20	
	UE504H	PC303W		4 flutes 45° helix flat Endmill	4	1.0	20	
	UE514	PC303W		4 flutes long neck flat Endmill	4	1.0	12	
Flat	UE524	PC303W		4 flutes flat Endmill	4	1.0	25	
	ULE504	PC303W		4 flutes autoumatic lathes flat Endmill	4	3.0	16	
	UE504	PC303W		4 flutes flat Endmill	4	0.8	25	
	UXE504	PC303W		4 flutes flat Endmill for heavy cuts	4	1.0	20	
	UE506	PC303W		6 flutes flat Endmill	6	6.0	20	
	UTE502	PC303W		2 flutes taper flat Endmill	2	0.3	10	
	UTE504	PC303W		4 flutes taper flat Endmill	4	Min 0.1 0.1 1.0 0.1 1.0 1.0 3.0 0.8 1.0 6.0	10	
	UR502	PC315W	20	2 flutes radius Endmill	2	0.2	20	
	UR512	PC315W		2 flutes neck type radius Endmill	2	0.2	20	
	UR542	PC315W		2 flutes taper neck radius Endmill	2	0.2	4	
	UR504	PC315W		4 flutes radius Endmill	4	3.0	20	
Radius	UR544	PC315W		4 flutes taper neck radius Endmill	4	1.0	4	
	UXR504	PC315W		4 flutes mutli helix radius Endmill	4	1.0	20	
	UXR514	PC315W		4 flutes mutli helix neck radius Endmill	4	1.0	20	
	UR506	PC315W	80000	6 flutes radius Endmill	6	6.0	20	
	UDR503	PC315W		3 flutes double radius Endmill	3	6.0	20	

区 Line-up

Type Designations		Grade	Picture	Product name	No. of	Size (Ø)	
туре	Designations	uraue	i iotui c	i iouuci name	flute	Min	Max
Radius	USPM4	PC315W		4 flutes radius Endmill for high feed	4	1.0	20
naulus	UTR504	PC315W		4 flutes taper radius Endmill	4	Min	2.5
	UB502	PC303W	e 🗢 I	2 flutes ball Endmill	2	0.1	25
	UB502P	PC303W		2 flutes high precision ball Endmill	2	0.1	12
	UB512	PC303W	~	2 flutes long neck ball Endmill	2	0.1	12
	UB512S6	PC303W		2 flutes long neck ball Endmill (shank 6)	2	0.5	2
Ball	UB532	PC303W		2 flutes lollipop style ball Endmill	2	3.0	12
Ddii	UB542	PC303W	~	2 flutes taper neck ball Endmill	2	0.1	12
	USB502	PC303W		2 flutes straight ball Endmill	2	3.0	20
	UB503	PC303W		3 flutes ball Endmill	3	1.0	12
	UB504	PC303W		4 flutes ball Endmill	4	1.0	12
	UTB502	PC303W		2 flutes taper ball Endmill	2	0.3	2
	UF50	PC303W		3~5 flutes chamfer pitch roughing Endmill	3~5	3.0	25
Roughing	UF51	PC303W		3~5 flutes fine pitch roughing Endmill	3~5	3.0	25
	UF51H	PC303W		3~5 flutes 45° helix fine pitch roughing Endmill	3~5	3.0	25

1 For the safe metalcutting

- Use safety supplies such as protective gloves to prevent possible injury while touching the edge of tools.
- Use safety glasess or safety cover to hedge possible dangers. Inappropriate usage or excessive cutting condition may lead tool's breakage or even the fragment's scattering.
- Clamp the workpiece tightly enough to prevent its movement while its machining.
- Properly manage the tool change phase because the inordinately used tool can be easily broken under the excessive cutting load or severe wear, and it may threat the operator's safety.
- Use safety cover because chips evacuated during cutting are hot and sharp and may cause burns and cuts. To remove chips safely, stop machining, put on protective gloves, and use a hook or other tools.
- Prepare for fire prevention measures as the use of the non-water soluble cutting oil may cause fire.
- Use safety cover and other safety supplies because the spare parts or the inserts can be pulled out due to centrifugal force while high speed machining.

Head Office: Holystar B/D, 326, Seocho-daero, Seocho-gu, Seoul, 06633, Republic of Korea Tel: +82-2-522-3181 Fax: +82-2-522-3184, +82-2-3474-4744 Web: www.korloy.com E-mail: sales.khq@korloy.com

Ô KORLOY AMERICA

620 Maple Avenue, Torrance, CA 90503, USA Tel: +1-310-782-3800 Toll Free: +1-888-711-0001 Fax: +1-310-782-3885 E-mail: sales.kai@korloy.com

🙆 KORLOY INDIA

Plot No. 415, Sector 8, IMT Manesar, Gurgaon 122051, Haryana, India Tel: +91-124-439-1790 Fax: +91-124-405-0032 E-mail: sales.kip@korloy.com

ORLOY TURKIYE

Serifali Mahallesi, Burhan Sokak NO: 34 Dudullu OSB/Umraniye/Istanbul, 34775, Turkiye Tel: +90-216-415-8874 E-mail: sales.ktl@korloy.com

🙆 KORLOY RUSSIA

Krasivy Dom office No. 305, Bld. 5, Novovladykinskiy proezd 8, 127106, Moscow, Russia Tel: +7-495-280-1486 Fax: +7-495-280-1459 E-mail: sales.krc@korloy.com

& KORLOY FACTORY INDIA

Plot No. 415, Sector 8, IMT Manesar, Gurgaon 122051, Haryana, India Tel: +91-124-439-1818 Fax: +91-124-405-0032 E-mail: pro.kim@korloy.com

A KORLOY EUROPE

Gablonzer Str. 25-27, 61440 Oberursel, Germany Tel: +49-6171-27783-0 Fax: +49-6171-27783-59 E-mail: sales.keg@korloy.com

(A) KORLOY BRASIL

Av. Aruana 280, conj.12, WLC, Alphaville, Barueri, CEP06460-010, SP, Brasil Tel: +55-114-193-3810 Fax: +55-114-193-5837 E-mail: sales.kbl@korloy.com

(Chile KORLOY CHILE

Av. Providencia 1650, Office 1009, 7500027 Providencia-Santiago, Chile Tel: +56-229-295-490 E-mail: sales.kcs@korloy.com

(A) KORLOY MEXICO

Calle R. M. Clemencia Borja Taboada 522, Jurica Acueducto, 76230 Juriquilla, Qro., Mexico Tel: +52-442-673-73-88 E-mail: sales.kml@korloy.com

